Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.978
1.
J Math Biol ; 88(5): 59, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589609

Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.


Ecosystem , Homing Behavior , Animals , Homing Behavior/physiology , Memory , Movement
2.
PeerJ ; 12: e17159, 2024.
Article En | MEDLINE | ID: mdl-38562997

Domestic cats (Felis catus) play a dual role in society as both companion animals and predators. When provided with unsupervised outdoor access, cats can negatively impact native wildlife and create public health and animal welfare challenges. The effective implementation of management strategies, such as buffer zones or curfews, requires an understanding of home range size, the factors that influence their movement, and the types of habitats they use. Here, we used a community/citizen scientist approach to collect movement and habitat use data using GPS collars on owned outdoor cats in the Kitchener-Waterloo-Cambridge-Guelph region, southwestern Ontario, Canada. Mean (± SD) 100% minimum convex polygon home range size was 8 ± 8 ha (range: 0.34-38 ha) and was positively associated with road density but not with intrinsic factors such as boldness, sex, or age. With regards to habitat selection, cats used greenspaces, roads, and agricultural land less often than predicted but strongly selected for impervious surfaces (urban areas other than greenspaces or roads). Our results suggest that wildlife near buildings and residential areas are likely at the greatest risk of cat predation and that a buffer size of 840 m would be needed to restrict cats from entering areas of conservation concern.


Animals, Wild , Homing Behavior , Animals , Cats , Ontario , Ecosystem , Predatory Behavior
3.
Anim Cogn ; 27(1): 37, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684551

For most primates living in tropical forests, food resources occur in patchworks of different habitats that vary seasonally in quality and quantity. Efficient navigation (i.e., spatial memory-based orientation) towards profitable food patches should enhance their foraging success. The mechanisms underpinning primate navigating ability remain nonetheless mostly unknown. Using GPS long-term tracking (596 days) of one group of wild western lowland gorillas (Gorilla gorilla gorilla), we investigated their ability to navigate at long distances, and tested for how the sun was used to navigate at any scale by improving landmark visibility and/or by acting as a compass. Long episodic movements ending at a distant swamp, a unique place in the home range where gorillas could find mineral-rich aquatic plants, were straighter and faster than their everyday foraging movements relying on spatial memory. This suggests intentional targeting of the swamp based on long-distance navigation skills, which can thus be efficient over a couple of kilometres. Interestingly, for both long-distance movements towards the swamp and everyday foraging movements, gorillas moved straighter under sunlight conditions even under a dense vegetation cover. By contrast, movement straightness was not markedly different when the sun elevation was low (the sun azimuth then being potentially usable as a compass) or high (so providing no directional information) and the sky was clear or overcast. This suggests that gorillas navigate their home range by relying on visual place recognition but do not use the sun azimuth as a compass. Like humans, who rely heavily on vision to navigate, gorillas should benefit from better lighting to help them identify landmarks as they move through shady forests. This study uncovers a neglected aspect of primate navigation. Spatial memory and vision might have played an important role in the evolutionary success of diurnal primate lineages.


Gorilla gorilla , Animals , Gorilla gorilla/physiology , Male , Female , Spatial Navigation , Sunlight , Spatial Memory , Movement , Homing Behavior
4.
Am J Primatol ; 86(6): e23617, 2024 Jun.
Article En | MEDLINE | ID: mdl-38467494

Primates are adept at dealing with fluctuating availability of resources and display a range of responses to minimize the effects of food scarcity. An important component of primate conservation is to understand how primates adapt their foraging and ranging patterns in response to fluctuating food resources. Animals optimize resource acquisition within the home range through the selection of resource-bearing patches and choose between contrasting foraging strategies (resource-maximizing vs. area-minimizing). Our study aimed to characterize the foraging strategy of a folivorous primate, Verreaux's sifaka (Propithecus verreauxi), by evaluating whether group home range size varied between peak and lean leaf seasons within a seasonally dry tropical forest in Madagascar. We hypothesized that Verreaux's sifaka used the resource maximization strategy to select high-value resource patches so that during periods of resource depression, the home range area did not significantly change in size. We characterized resource availability (i.e., primary productivity) by season at Kirindy Mitea National Park using remotely-sensed Enhanced Vegetation Index data. We calculated group home ranges using 10 years of focal animal sampling data collected on eight groups using both 95% and 50% kernel density estimation. We used area accumulation curves to ensure each group had an adequate number of locations to reach seasonal home range asymptotes. Neither 95% home ranges nor 50% core areas differed across peak and lean leaf resource seasons, supporting the hypothesis that Verreaux's sifaka use a resource maximization strategy. With a better understanding of animal space use strategies, managers can model anticipated changes under environmental and/or anthropogenic resource depression scenarios. These findings demonstrate the value of long-term data for characterizing and understanding foraging and ranging patterns. We also illustrate the benefits of using satellite data for characterizing food resources for folivorous primates.


Homing Behavior , Seasons , Strepsirhini , Animals , Strepsirhini/physiology , Madagascar , Forests , Feeding Behavior , Ecosystem
5.
Sci Rep ; 14(1): 6770, 2024 03 21.
Article En | MEDLINE | ID: mdl-38514686

Many animals return to their home areas (i.e., 'homing') after translocation to sites further away. Such translocations have traditionally been used in behavioral ecology to understand the orientation and migration behavior of animals. The movement itself can then be followed by marking and recapturing animals or by tracking, for example, using GPS systems. Most detailed studies investigating this behavior have been conducted in smaller vertebrates (e.g., birds, amphibians, and mice), whereas information on larger mammals, such as red deer, is sparse. We conducted GPS-assisted translocation experiments with red deer at two sites in the Czech Republic. Individuals were translocated over a distance of approximately 11 km and their home journey was tracked. Circular statistics were used to test for significant homeward orientation at distances of 100, 500, 1000, and 5000 m from the release site. In addition, we applied Lavielle trajectory segmentation to identify the different phases of homing behavior. Thirty-one out of 35 translocations resulted in successful homing, with a median time of 4.75 days (range 1.23-100 days). Animals were significantly oriented towards home immediately after release and again when they came closer to home; however, they did not show a significant orientation at the distances in between. We were able to identify three homing phases, an initial 'exploratory phase', followed by a 'homing phase' which sometimes was again followed by an 'arrival phase'. The 'homing phase' was characterized by the straightest paths and fastest movements. However, the variation between translocation events was considerable. We showed good homing abilities of red deer after translocation. Our results demonstrate the feasibility of conducting experiments with environmental manipulations (e.g., to impede the use of sensory cues) close to the release site. The homing behavior of red deer is comparable to that of other species, and might represent general homing behavior patterns in animals. Follow-up studies should further dissect and investigate the drivers of the individual variations observed and try to identify the sensory cues used during homing.


Deer , Homing Behavior , Animals , Mice , Columbidae , Movement , Ecology , Translocation, Genetic
6.
Proc Biol Sci ; 291(2019): 20240040, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38531398

Interactions between environmental stressors may contribute to ongoing pollinator declines, but have not been extensively studied. Here, we examined the interaction between the agricultural fungicide Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high temperatures on critical honeybee behaviours. We have previously shown that consumption of field-realistic levels of this fungicide shortens worker lifespan in the field and impairs associative learning performance in a laboratory-based assay. We hypothesized that Pristine would also impair homing and foraging behaviours in the field, and that an interaction with hot weather would exacerbate this effect. Both field-relevant Pristine exposure and higher air temperatures reduced the probability of successful return on their own. Together, the two factors synergistically reduced the probability of return and increased the time required for bees to return to the hive. Pristine did not affect the masses of pollen or volumes of nectar or water brought back to the hive by foragers, and it did not affect the ratio of forager types in a colony. However, Pristine-fed bees brought more concentrated nectar back to the hive. As both agrochemical usage and heat waves increase, additive and synergistic negative effects may pose major threats to pollinators and sustainable agriculture.


Fungicides, Industrial , Bees , Animals , Plant Nectar , Homing Behavior , Temperature , Conditioning, Classical
7.
Primates ; 65(3): 173-181, 2024 May.
Article En | MEDLINE | ID: mdl-38436838

It is common that neighboring groups of the same species use some of the same areas, resulting in home-range overlap. Areas between the home ranges of neighboring groups not used by either group (no-use zone or NUZ) are rarely reported. Here, we report the existence of a NUZ between the home ranges of two Geoffroy's spider monkey groups, and examine its spatial changes over time and the ecological and behavioral underpinnings of such phenomenon. Although its size and location changed between 2017 and 2022, the NUZ was always present. We did not find any differences in the vegetation structure and composition between the NUZ and the ranging areas and in the monkeys' activity patterns between areas adjacent to the NUZ and the other parts of the ranging areas. The number of monkey vocalizations was lower and subgroup size was smaller (although the number of males did not differ) in areas adjacent to the NUZ than in the other parts of the ranging areas. Both changes possibly reflect the tendency to conceal their presence to the neighboring group. Our findings contribute to the understanding of primate space use and highlight the need to focus on the areas delimiting home ranges.


Ateles geoffroyi , Atelinae , Male , Animals , Homing Behavior
8.
J Anim Ecol ; 93(4): 488-500, 2024 Apr.
Article En | MEDLINE | ID: mdl-38459628

As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.


Ecosystem , Homing Behavior , Animals , Mammals , Temperature
9.
Behav Brain Res ; 465: 114971, 2024 May 08.
Article En | MEDLINE | ID: mdl-38552743

Within their familiar areas homing pigeons rely on familiar visual landscape features and landmarks for homing. However, the neural basis of visual landmark-based navigation has been so far investigated mainly in relation to the role of the hippocampal formation. The avian visual Wulst is the telencephalic projection field of the thalamofugal pathway that has been suggested to be involved in processing lateral visual inputs that originate from the far visual field. The Wulst is therefore a good candidate for a neural structure participating in the visual control of familiar visual landmark-based navigation. We repeatedly released and tracked Wulst-lesioned and control homing pigeons from three sites about 10-15 km from the loft. Wulst lesions did not impair the ability of the pigeons to orient homeward during the first release from each of the three sites nor to localise the loft within the home area. In addition, Wulst-lesioned pigeons displayed unimpaired route fidelity acquisition to a repeated homing path compared to the intact birds. However, compared to control birds, Wulst-lesioned pigeons displayed persistent oscillatory flight patterns across releases, diminished attention to linear (leading lines) landscape features, such as roads and wood edges, and less direct flight paths within the home area. Differences and similarities between the effects of Wulst and hippocampal lesions suggest that although the visual Wulst does not seem to play a direct role in the memory representation of a landscape-landmark map, it does seem to participate in influencing the perceptual construction of such a map.


Columbidae , Homing Behavior , Animals , Orientation , Telencephalon
10.
Sci Rep ; 14(1): 3103, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326313

The brown meagre (Sciaena umbra) is an endangered species, which requires specific protection measures to ensure its conservation. These measures need to be informed by high-quality scientific knowledge on their space use patterns. Here, we used acoustic telemetry to assess its seasonal movement patterns and habitat use within a marine protected area (MPA). Our results suggested that S. umbra is a highly sedentary species (home range < 1.0 km2) and, therefore, the MPA is extensive enough to protect the local population. Their population was discretely distributed in two main areas within the MPA, which was likely a result of habitat segregation and density-dependent movements. The temporal variability of their movements further uncovered when and where spawning occurs (mainly, but probably not only, in the fully protected area in June) and indicated that spillover of this species is limited but still possible. Overall, we highlight the importance of MPAs in the recovery of S. umbra, we advocate the need to perpetuate the current national fishing bans and extend it to other countries in the Mediterranean region, and we emphasize that considering the fine-scale movements of S. umbra in future management actions is key to achieving a successful recovery of their populations.


Perciformes , Umbridae , Animals , Conservation of Natural Resources/methods , Ecosystem , Homing Behavior , Acoustics , Fishes
11.
Proc Natl Acad Sci U S A ; 121(8): e2320764121, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38346192

Many animal species rely on the Earth's magnetic field during navigation, but where in the brain magnetic information is processed is still unknown. To unravel this, we manipulated the natural magnetic field at the nest entrance of Cataglyphis desert ants and investigated how this affects relevant brain regions during early compass calibration. We found that manipulating the Earth's magnetic field has profound effects on neuronal plasticity in two sensory integration centers. Magnetic field manipulations interfere with a typical look-back behavior during learning walks of naive ants. Most importantly, structural analyses in the ants' neuronal compass (central complex) and memory centers (mushroom bodies) demonstrate that magnetic information affects neuronal plasticity during early visual learning. This suggests that magnetic information does not only serve as a compass cue for navigation but also as a global reference system crucial for spatial memory formation. We propose a neural circuit for integration of magnetic information into visual guidance networks in the ant brain. Taken together, our results provide an insight into the neural substrate for magnetic navigation in insects.


Ants , Animals , Ants/physiology , Learning/physiology , Brain , Neuronal Plasticity/physiology , Magnetic Phenomena , Homing Behavior/physiology , Cues , Desert Climate
12.
Learn Behav ; 52(1): 69-84, 2024 Mar.
Article En | MEDLINE | ID: mdl-38379118

Birds and social insects represent excellent systems for understanding visually guided navigation. Both animal groups use surrounding visual cues for homing and foraging. Ants extract sufficient spatial information from panoramic views, which naturally embed all near and far spatial information, for successful homing. Although egocentric panoramic views allow for parsimonious explanations of navigational behaviors, this potential source of spatial information has been mostly neglected during studies of vertebrates. Here we investigate how distinct landmarks, a beacon, and panoramic views influence the reorientation behavior in pigeons (Columba livia). Pigeons were trained to search for a location characterized by a beacon and several distinct landmarks. Transformation tests manipulated aspects of the landmark configuration, allowing for a dissociation among navigational strategies. Quantitative image and path analyses provided support that the panoramic view was used by the pigeons. Although the results from some individuals support the use of beaconing, overall the pigeons relied predominantly on the panoramic view when spatial cues provided conflicting information regarding the goal location. Reorientation based on vector and bearing information derived from distinct landmarks as well as environmental geometry failed to account fully for the results. Thus, the results of our study support that pigeons can use panoramic views for reorientation in familiar environments. Given that the current model for landmark use by pigeons posits the use of different vectors from an object, a global panorama-matching strategy suggests a fundamental change in the theory of how pigeons use surrounding visual cues for localization.


Columbidae , Homing Behavior , Animals , Orientation , Cues
13.
Sci Total Environ ; 920: 169753, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38181953

Inshore marine habitats experience considerable anthropogenic pressure, as this is where many adverse effects of human activities concentrate. In the rapidly-changing seascape of the Anthropocene, Hong Kong waters at the heart of world's fastest developing coastal region can serve as a preview-window into coastal seas of the future, with ever-growing anthropogenic footprint. Here, we quantify how large-scale coastal infrastructure projects can affect obligatory inshore cetaceans, bringing about population-level consequences that may compromise their long-term demographic viability. As a case in point, we look at the construction of world's longest sea crossing system and broad-scale demographic, social and spatial responses it has caused in a shallow-water delphinid, the Indo-Pacific humpback dolphin (Sousa chinensis). Soon after the infrastructure project began, dolphins markedly altered their home range near construction sites such that these waters no longer functioned as dolphin core areas despite the apparent presence of prey, indicating that anthropogenic impacts outweighed foraging benefits. The contraction of key habitats has in turn led individuals to interact over spatially more constricted area, reshaping their group dynamics and social network. Although there was no apparent decline in dolphin numbers that could be detected with mark-recapture estimates, adult survival rates decreased drastically from 0.960 to 0.904, the lowest estimate for these animals anywhere across the region to date, notably below the previously estimated demographic threshold of their long-term persistence (0.955). It is apparent that during an advanced stage of this coastal infrastructure project, dolphins were under a major anthropogenic pressure that, if sustained, could be detrimental to their long-term persistence as a viable demographic unit. As effective conservation of species and habitats depends on informed management decisions, this study offers a valuable lesson in environmental risk assessment, underscoring the implications of human-induced rapid environmental change on obligatory inshore delphinids-sentinels of coastal habitats that are increasingly degraded in fast-changing coastal seas.


Dolphins , Animals , Humans , Hong Kong , Cetacea , Population Dynamics , Homing Behavior , Ecosystem
14.
PLoS One ; 19(1): e0297687, 2024.
Article En | MEDLINE | ID: mdl-38271386

Here, the presence or absence of territoriality was evaluated in an all-male Nile crocodile (Crocodylus niloticus) group living in an ex-situ environment. Location data for each crocodile within the exhibit were collected three times per day over a two-year period, including two warm seasons and two cold seasons. A geographic information system (GIS) was used to create seasonal home ranges and core areas for each crocodile, to quantify the overlap of these home ranges and core areas to assess potential territoriality, and to calculate exhibit preferences of the group. Core area overlap was significantly lower than home range overlap, suggesting the crocodiles established territories within their exhibit. This pattern of behavior was similar across seasons, though it moderately intensified during the cold season. The crocodiles appeared to be more territorial in water, as overlap was most concentrated on the central beach, the only feature utilized more than expected based in its availability in the exhibit. These findings highlight the behavioral complexity of Nile crocodiles in human care, specifically the ability of Nile crocodiles to adapt to ex-situ environments similar to their wild counterparts by forming territories despite spatial constraints. Identifying the presence of territorial behavior is important for the care and welfare of ex-situ animals, as territorial animals have specific requirements that may result in increased agonism when unmet. It can also provide valuable context to aid in mitigation strategies, for example, when undesirable levels of agonism do occur. The findings here provide an example of how methodology from the wildlife ecology field can be adapted to ex-situ settings using a GIS and contributes to the current understanding of crocodilian behavior in human care.


Alligators and Crocodiles , Animals , Male , Humans , Homing Behavior , Territoriality , Animals, Wild , Ecology
15.
Learn Behav ; 52(1): 114-131, 2024 Mar.
Article En | MEDLINE | ID: mdl-37752304

Ant species exhibit behavioural commonalities when solving navigational challenges for successful orientation and to reach goal locations. These behaviours rely on a shared toolbox of navigational strategies that guide individuals under an array of motivational contexts. The mechanisms that support these behaviours, however, are tuned to each species' habitat and ecology with some exhibiting unique navigational behaviours. This leads to clear differences in how ant navigators rely on this shared toolbox to reach goals. Species with hybrid foraging structures, which navigate partially upon a pheromone-marked column, express distinct differences in their toolbox, compared to solitary foragers. Here, we explore the navigational abilities of the Western Thatching ant (Formica obscuripes), a hybrid foraging species whose navigational mechanisms have not been studied. We characterise their reliance on both the visual panorama and a path integrator for orientation, with the pheromone's presence acting as a non-directional reassurance cue, promoting continued orientation based on other strategies. This species also displays backtracking behaviour, which occurs with a combination of unfamiliar terrestrial cues and the absence of the pheromone, thus operating based upon a combination of the individual mechanisms observed in solitarily and socially foraging species. We also characterise a new form of goalless orientation in these ants, an initial retreating behaviour that is modulated by the forager's path integration system. The behaviour directs disturbed inbound foragers back along their outbound path for a short distance before recovering and reorienting back to the nest.


Ants , Homing Behavior , Animals , Cues , Motivation , Pheromones
16.
Learn Behav ; 52(1): 92-104, 2024 Mar.
Article En | MEDLINE | ID: mdl-38052764

Solitarily foraging ant species differ in their reliance on their two primary navigational systems- path integration and visual learning. Despite many species of Australian bull ants spending most of their foraging time on their foraging tree, little is known about the use of these systems while climbing. "Rewinding" displacements are commonly used to understand navigational system usage, and work by introducing a mismatch between these navigational systems, by displacing foragers after they have run-down their path integration vector. We used rewinding to test the role of path integration on the arboreal and terrestrial navigation of M. midas. We rewound foragers along either the vertical portion, the ground surface portion, or across both portions of their homing trip. Since rewinding involves repeatedly capturing and releasing foragers, we included a nondisplacement, capture-and-release control, in which the path integration vector is unchanged. We found that rewound foragers do not seem to accumulate path integration vector, although a limited effect of vertical rewinding was found, suggesting a potential higher sensitivity while descending the foraging tree. However, the decrease in navigational efficiency due to capture was larger than the vertical rewinding effect, which along with the negative impact of the vertical surface, and an interaction between capture and rewinding, may suggest aversion rather than path integration caused the vertical rewinding response. Together these results add to the evidence that M. midas makes minimal use of path integration while foraging, and the growing evidence that they are capable of quickly learning from aversive stimulus.


Ants , Cues , Animals , Australia , Ants/physiology , Homing Behavior/physiology , Spatial Learning
17.
Learn Behav ; 52(1): 85-91, 2024 Mar.
Article En | MEDLINE | ID: mdl-37985604

Desert ant foragers are well known for their visual navigation abilities, relying on visual cues in the environment to find their way along routes back to the nest. If the inconspicuous nest entrance is missed, ants engage in a highly structured systematic search until it is discovered. Searching ants continue to be guided by visual cues surrounding the nest, from which they derive a location estimate. The precision level of this estimate depends on the information content of the nest panorama. This study examines whether search precision is also affected by the directional distribution of visual information. The systematic searching behavior of ants is examined under laboratory settings. Two different visual scenarios are compared - a balanced one where visual information is evenly distributed, and an unbalanced one where all visual information is located on one side of an experimental arena. The identity and number of visual objects is similar over both conditions. The ants search with comparable precision in both conditions. Even in the visually unbalanced condition, searches are characterized by balanced precision on both sides of the arena. This finding lends support to the idea that ants memorize the visual scenery at the nest as panoramic views from different locations. A searching ant is thus able to estimate its location with equal precision in all directions, leading to symmetrical search paths.


Ants , Cues , Animals , Homing Behavior , Appetitive Behavior
18.
Am J Primatol ; 86(2): e23578, 2024 Feb.
Article En | MEDLINE | ID: mdl-37985945

Precise estimates of population dynamics and social grouping patterns are required for effective conservation of wild animal populations. It is difficult to obtain such information on non-human great apes as they have slow reproductive rates. To gain a better understanding of demography in these populations, previous research has typically involved habituation\, a process that requires years. Here, we collected data continuously over year-long periods to monitor an unhabituated population of critically endangered Western chimpanzees (Pan troglodytes verus) in the Moyen Bafing National Park, Guinea. We used two arrays of 100 camera traps that were placed opportunistically in two distinct 100 km2 sites, named Bakoun and Koukoutamba. We identified 227 individuals in Bakoun and 207 in Koukoutamba through their unique facial features. Our camera trap data make clear that these individuals belong to six and seven closed groups, respectively. Six of those groups were near-completely sampled with an average minimum size of 46.8 individuals (range: 37-58), and a mean adult sex ratio of 1.32 (range: 0.93-2.10). We described the demographic composition of these groups and use Bayesian social network analysis to understand population structure. The network analyses suggested that the social bonds within the two populations were structured by sex homophily, with male chimpanzees being more or equally likely to be observed together than other adult associations. Through estimation of minimum convex polygons, we described the minimum home range for those groups. Compared to other chimpanzee groups living in a similar environment (mosaic savanna-forest), the Moyen Bafing region seems to host a high-density of chimpanzees with small home ranges for their group size. Our research highlights the potential of camera traps for studying the demographic composition of chimpanzee populations with high resolution and obtaining crucial information on several groups in a time-efficient and cost-effective way.


Homing Behavior , Pan troglodytes , Humans , Male , Animals , Guinea , Parks, Recreational , Bayes Theorem , Population Dynamics , Social Structure
19.
Learn Behav ; 52(1): 105-113, 2024 Mar.
Article En | MEDLINE | ID: mdl-37993707

A large volume of research on individually navigating ants has shown how path integration and visually guided navigation form a major part of the ant navigation toolkit for many species and are sufficient mechanisms for successful navigation. One of the behavioural markers of the interaction of these mechanisms is that experienced foragers develop idiosyncratic routes that require that individual ants have personal and unique visual memories that they use to guide habitual routes between the nest and feeding sites. The majority of ants, however, inhabit complex cluttered environments and social pheromone trails are often part of the collective recruitment, organisation and navigation of these foragers. We do not know how individual navigation interacts with collective behaviour along shared trails in complex natural environments. We thus asked here if wood ants that forage through densely cluttered woodlands where they travel along shared trails repeatedly follow the same routes or if they choose a spread of paths within the shared trail. We recorded three long homing trajectories of 20 individual wood ants in their natural woodland habitat. We found that wood ants follow idiosyncratic routes when navigating along shared trails through highly complex visual landscapes. This shows that ants rely on individual memories for habitual route guidance even in cluttered environments when chemical trail information is available. We argue that visual cues are likely to be the dominant sensory modality for the idiosyncratic routes. These experiments shed new light on how ants, or insects in general, navigate through complex multimodal environments.


Ants , Animals , Homing Behavior , Memory , Cues , Environment
20.
J Exp Biol ; 227(2)2024 Jan 15.
Article En | MEDLINE | ID: mdl-38126715

Maintaining positional estimates of goal locations is a fundamental task for navigating animals. Diverse animal groups, including both vertebrates and invertebrates, can accomplish this through path integration. During path integration, navigators integrate movement changes, tracking both distance and direction, to generate a spatial estimate of their start location, or global vector, allowing efficient direct return travel without retracing the outbound route. In ants, path integration is accomplished through the coupling of pedometer and celestial compass estimates. Within path integration, it has been theorized navigators may use multiple vector memories for way pointing. However, in many instances, these navigators may instead be homing via view alignment. Here, we present evidence that trail-following ants can attend to segments of their global vector to retrace their non-straight pheromone trails, without the confound of familiar views. Veromessor pergandei foragers navigate to directionally distinct intermediate sites via path integration by orienting along separate legs of their inbound route at unfamiliar locations, indicating these changes are not triggered by familiar external cues, but by vector state. These findings contrast with path integration as a singular memory estimate in ants and underscore the system's ability to way point to intermediate goals along the inbound route via multiple vector memories, akin to trapline foraging in bees visiting multiple flower patches. We discuss how reliance on non-straight pheromone-marked trails may support attending to separate vectors to remain on the pheromone rather than attempting straight-line shortcuts back to the nest.


Ants , Animals , Homing Behavior , Cues , Pheromones
...